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Abstract
We provide time-evolution operators, gauge transformations and a perturbative
treatment for non-Hermitian Hamiltonian systems, which are explicitly time
dependent. We determine various new equivalence pairs for Hermitian and
non-Hermitian Hamiltonians, which are therefore pseudo-Hermitian and in
addition in some cases also invariant under PT -symmetry. In particular, for
the harmonic oscillator perturbed by a cubic non-Hermitian term, we evaluate
explicitly various transition amplitudes, for the situation when these systems
are exposed to a monochromatic linearly polarized electric field.

PACS numbers: 03.65.Ge, 11.30.Er, 03.65.−w

1. Introduction

To be able to predict the evolution in time for a Hamiltonian system is of central importance
to most practical physical problems. For the standard situation, i.e. when the Hamiltonian is
Hermitian, there exist well-developed frameworks. Having for instance in mind to anticipate
the response of an atomic system described by a Hermitian Hamiltonian when it is subjected
to an external time-dependent laser field is an intensively studied problem in the weak and
recently also in the strong field regime. In the former case Fermi’s golden rule is for instance
one of the central results, whereas the latter case leads to interesting new phenomena such as
high harmonic generation [1], above threshold ionization [2] and stabilization [3–5] (see also
[6, 7] for strong field phenomena in general).

Less developed is the situation regarding non-Hermitian Hamiltonians. Depending on the
nature of their eigenvalues non-Hermitian Hamiltonian systems can be investigated in various
fundamentally different ways. When the corresponding energy eigenvalues are complex one
may essentially keep the standard framework and accept the fact that the non-Hermitian nature
of the Hamiltonian will lead to decaying states and wavefunctions. Various investigations
concentrate on that particular setting [8–14]. However, more recently it was observed that
a large class of non-Hermitian Hamiltonians possess real and positive spectra [15]. For that
situation it is natural to demand preservation of probability density, which is not guaranteed
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even when the Hamiltonian is time independent. By now there exists a considerable amount
of results regarding this situation for various single particle systems [16–20] quantum field
theories1 [23–25] and also integrable many particle systems [26, 27]. So far most effort has
gone into the development of a proper quantum mechanical framework for such systems.
The main purpose of this paper is to extend these treatments, such that they include a proper
description for the time evolution for non-Hermitian Hamiltonian systems.

Our manuscript is organized as follows: in order to establish our notation and to highlight
the key concepts we review in section 2 the main characteristics for a consistent quantum
mechanical description involving non-Hermitian Hamiltonians. In section 3 we generalize the
scheme to construct time-independent pseudo-Hermitian Hamiltonian systems and provide
a systematic procedure, which leads to closed formulae involving Euler’s numbers for the
equivalence pairs of Hermitian and non-Hermitian Hamiltonians, h and H, respectively.
Subsequently we employ that scheme to compute various new equivalence pairs in its exact
and perturbative form needed afterwards for the time-dependent treatment. In particular, we
generalize non-Hermitian perturbations of the harmonic oscillator to anharmonic oscillators
with a wider class of perturbations in an exact formulation. Amongst those new non-Hermitian
Hamiltonians is a doubly graded generalization of the Swanson Hamiltonian. Perturbatively
we also compute Hermitian counterparts for the harmonic oscillator with an additional
igxn-term for generic n, hitherto only studied for specific cases. In particular, for the case
n = 3 we provide the explicit formula for all wavefunctions up to order g3, which turn out
to be far simpler than their non-Hermitian counterparts. In section 4 we discuss the time
evolution for non-Hermitian Hamiltonian systems in various different gauges and investigate
a time-dependent perturbation theory. As a particular example we employ the formalism to
compute some transition probabilities for the harmonic oscillator perturbed by igx3 in an
external laser field. We state our conclusions in section 5.

2. Quantum mechanics involving non-Hermitian Hamiltonians

The possibility that non-Hermitian Hamiltonian systems can possess discrete eigenstates with
real positive energies has already been indicated by von Neumann and Wigner [28] almost
80 years ago. More recently this type of systems are under more intense scrutiny and nowadays
the properties of these so-called BICs (bound states in the continuum) are fairly well understood
for many concrete examples [29–31] together with their bi-orthonormal eigenstates [32, 33].

Whereas the above type of Hamiltonians only possesses single states with these ‘strange
properties’ [28], it was observed 8 years ago by Bender and Boettcher [15] that Hamiltonians
with potential terms V = x2(ix)ν for ν � 0 possess an entirely real and positive spectrum.
Since that discovery non-Hermitian Hamiltonians, in the sense that H † �= H , are under intense
investigation. Initially the reality of the spectrum was attributed to the PT -symmetry of the
Hamiltonian. In fact, when the wavefunctions are simultaneous eigenstates of the Hamiltonian
and the PT -operator one can easily argue that the spectrum has to be real [34]. However,
despite the fact that [PT,H ] = 0, this is not always guaranteed as the PT -operator is an anti-
linear operator [19]. As a consequence one may also encounter conjugate pairs of eigenvalues
for broken PT -symmetry [34]. To determine whether the PT -symmetry is broken or not one
may use various techniques to verify this case-by-case [18, 35]. The central problem arising
in this context is that inner products of wavefunctions constituting solutions of the time-
independent Schrödinger equation involving non-Hermitian Hamiltonians become indefinite,

1 In (1+1)-dimensional quantum field theories non-Hermitian Hamiltonian systems are known to be meaningful for
some time [21, 22].
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which is due to the fact that the wavefunctions have to be simultaneous eigenfunctions of H
and the PT -operator [36]. To overcome this problem one may dress the wavefunctions by
an additional parameter [37]. Thereafter, Bender, Brody and Jones [34] solved this problem
consistently by introducing a new type of inner product

〈�|�′〉CPT := (CPT |�〉)T · |�′〉, (2.1)

which then indeed leads to a positive definite metric, that is 〈�n|�m〉CPT = δnm when
labelling the energies by increasing values εn. This inner product inherits one complication,
which is already present when solving the eigenvalue problem, namely that eventually the
wavefunctions � no longer vanish for |x| → ∞. In that situation one has to integrate within
wedges bounded by the Stokes lines in the complex x-plane [15]. A further initial drawback of
this formulation was that the C-operator C(x, y) = ∑

n �n(x)�n(y) needed to be determined
dynamically, which requires in principle the knowledge of all wavefunctions. Meanwhile also
alternative methods have been developed to compute C and this is no longer a real obstacle.
For instance, noting that C is a symmetry of the Hamiltonian and in addition an involution,
one may compute it alternatively by solving the algebraic equations [38]

[C,H ] = 0, [C,PT ] = 0 and C2 = 1. (2.2)

Even before the discovery of [15] and the introduction of the CPT -inner product (2.1)
there have been very general considerations addressing the question of how a consistent
quantum mechanical framework can be constructed for non-Hermitian Hamiltonian systems
[39]. It was understood that quasi-Hermitian (pseudo-Hermitian) systems would lead to
positive inner products. Subsequently this was further developed by Mostafazadeh [40–43],
who proposed that instead of considering PT -invariant Hamiltonians one may investigate
pseudo-Hermitian Hamiltonians satisfying

h = ηHη−1 = h† = η−1H †η ⇔ H † = η2Hη−2, (2.3)

with η† = η. Since the Hermitian Hamiltonian h and the non-Hermitian Hamiltonian H are
related by a similarity transformation, they belong to the same similarity class and therefore
have the same eigenvalues2. The corresponding time-independent Schrödinger equations are
then simply

hφ = εφ and H� = ε�, (2.4)

where the wavefunctions are related as

� = η−1φ. (2.5)

Having real eigenvalues for the Hermitian Hamiltonian h then guarantees by construction a
positive spectrum also for H. In fact, this formulation is more general than demanding the
Hamiltonian to be PT -symmetric, which is only a sufficient, but not a necessary condition
for the spectrum to be real for unbroken PT -symmetry of the wavefunctions. In addition the
formulation which involves pseudo-Hermitian Hamiltonians is more intuitive as the reality of
the spectrum of H is completely evident. Inner products for the wavefunctions � related to
the non-Hermitian Hamiltonian H may now simply be taken to be

〈�|�′〉η := 〈�|η2�′〉, (2.6)

where the inner product on the right-hand side of (2.6) is the conventional inner product
associated with the Hermitian Hamiltonian h. In case the similarity transformation (2.3)
holds, the Hamiltonian H is PT -symmetric and when in addition the solution to (2.2) is taken

2 For a more formal discussion, in particular on the question of whether h is a Schrödinger-type operator we refer
the reader to the literature [40–44] .
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to be C = η−2P , the CPT-inner product (2.1), the η-inner product (2.6) and the conventional
inner product related to the Hermitian Hamiltonian coincide

〈�|�′〉CPT = 〈�|�′〉η = 〈φ|φ′〉. (2.7)

With regard to (2.7) one may wonder why one requires the CPT-inner products when one
may in fact use the η-inner products, or even more radically why one needs the non-Hermitian
formulations at all when they can always be related to the standard inner products. In fact,
these issues are quite controversially discussed at present [45–48]. With regard to CPT versus
pseudo-Hermiticity, our point of view is that despite the limited restrictive power of PT -
symmetry, in particular the fact that it does not guarantee a positive spectrum, it is a very
good guiding principle to select potentially interesting non-Hermitian Hamiltonians on the
classical level, e.g. for many-particle systems [26, 27] . This property can be read off directly
from a classical Hamiltonian, whereas even when one has identified such Hamiltonians,
a proper analysis requires the construction of the similarity transformation η of the CPT-
operator, which is usually not evident a priori. With regard to the inner products, it appears
far easier to construct η rather than the CPT-operator. One apparent virtue of the non-
Hermitian formulation, using CPT or η-inner products, is that in this way we may relate
simple non-Hermitian Hamiltonians to fairly complicated Hermitian Hamiltonians. It is
sometimes argued that the computations in the non-Hermitian framework are simpler to
perform [47], but this statement has been challenged [48]. Certainly, as we will see below,
this feature cannot be elevated to a general principle. We will see that even when the non-
Hermitian Hamiltonian looks simpler than its Hermitian counterpart, this is not true for the
corresponding wavefunctions, which still take on a simpler form in the Hermitian formulation.
Furthermore, we find here in addition that the time-dependent non-Hermitian formulation will
always be more complicated or at most of equal degree of complexity than the Hermitian one.
It appears to us that the best strategy is to make use of both worlds and switch to one or the
other formulation depending on the specific problem at hand.

The main purpose of this paper is to investigate how these frameworks may be translated
to the situation when the Hamiltonians become genuinely time dependent.

3. Construction of pseudo-Hermitian Hamiltonians

Accepting that a non-Hermitian formulation of quantum mechanics is more straightforward
in a pseudo-Hermitian formulation rather than a CPT-scheme, the question with regard to
(2.3) then arises of how to construct Hamiltonians h and H belonging to the same equivalence
class. Supposing that the similarity transformation can be realized by using an operator of
the form η = exp(q/2), the relation (2.3) implies by standard Baker–Campbell–Hausdorff
commutation relations that

H † = H + [q,H ] +
1

2!
[q, [q,H ]] +

1

3!
[q, [q, [q,H ]]] + · · · =

∞∑
n=0

1

n!
c(n)
q (H). (3.1)

For convenience we have introduced here a more compact notation for the n-fold commutator
of the operator q with some arbitrary operator O as

c(n)
q (O) := [q, [q, [q, . . . [q,O] . . .]]]. (3.2)

Taking now the non-Hermitian Hamiltonian to be of the form H = h0 + ih1, with h0 = h
†
0,

h1 = h
†
1 the relation (3.1) acquires the form

i[q, h0] +
i

2
[q, [q, h0]] +

i

3!
[q, [q, [q, h0]]] + · · · = 2h1 + [q, h1] +

1

2
[q, [q, h1]] + · · ·

(3.3)
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In solving this equation one may start from different given quantities. For instance one may
solve for h1 with given h0, q, see section 3.1, or one may solve for q with given h0, h1, see
section 3.2. We will not treat the remaining possibility of constructing h0 for given h1, q.
Furthermore, we will also not discuss the interesting possibility of exploiting the isomorphism
between commutator relations and Moyal products [49, 50]. This relation allows us to translate
the commutator relation into a differential equation for η, which may be solved subsequently.

3.1. Exact similarity relations

Some simple exact solutions to (3.3) can be found easily in a quite systematic way by searching
for vanishing multi-commutators. For instance, if for a given Hermitian Hamiltonian h0 we
can find some q such that its triple commutator with h0 is vanishing

[q, [q, [q, h0]]] = 0, (3.4)

we can define the non-Hermitian part of H as

h1 = i

2
[q, h0], (3.5)

such that the relation (3.3) is solved exactly. According to (2.3) the Hermitian counterpart h
of the non-Hermitian Hamiltonian H is then computed to

h = η
(
h0 − 1

2 [q, h0]
)
η−1 = h0 − 1

8 [q, [q, h0]]. (3.6)

We can generalize this construction procedure to any vanishing n-fold commutator of q with
h0. Assuming for this that the sum in (3.3) terminates at some stage, i.e. c(�+1)

q (h0) = 0, we
make the following ansatz for the non-Hermitian part of H

h1 = i
�∑

n=1

κn

n!
c(n)
q (h0), (3.7)

where the constants κn ∈ R are to be determined such that the relation (3.3) is solved exactly.
The substitution of (3.7) into (3.3) then yields

�∑
n=1

1

n!
c(n)
q (h0) =

�∑
n=1

2
κn

n!
c(n)
q (h0) +

�−1∑
n=1

�∑
m=1

1

n!

κm

m!
c(n+m)
q (h0). (3.8)

Reading off the coefficients of equal n-fold commutators from this equation produces a
recursive equation for the constants κn

κn = 1

2
− 1

2

n−1∑
m=0

( n

m

)
κm for 1 � n � �. (3.9)

With κ0 = 0, we can solve (3.9) iteratively and find that all coefficients κn for even n vanish,
whereas the remaining ones become

κ1 = 1
2 , κ3 = − 1

4 , κ5 = 1
2 , κ7 = − 17

8 , κ9 = − 31
2 , κ11 = − 691

4 , . . . . (3.10)

Finally we compute from (2.3) the Hermitian counterpart h of H to

h = η

(
h0 −

�∑
n=1

κn

n!
c(n)
q (h0)

)
η−1 =

�∑
n=0

λn

2nn!
c(n)
q (h0), (3.11)

where the constants λn are related to the κn as

λn = 1 −
n∑

m=0

2m
( n

m

)
κm. (3.12)
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Using the above solutions for the κn in (3.10), we find that only coefficients λn with n even
are non-vanishing

λ0 = 1, λ2 = −1, λ4 = 5, q λ6 = −61, λ8 = 1385, λ10 = −50 521, . . . . (3.13)

In fact we observe that these constants are very closely related to Euler’s numbers En as
λ2n = (−1)nEn for n = 1, 2, 3, . . . . With this identification we may alternatively solve the
equations (3.12) for the constants κm, such that they are also expressed in terms of Euler’s
numbers

κn = 1

2n

[(n+1)/2]∑
m=1

(−1)n+m
( n

2m

)
Em. (3.14)

Here [x] denotes the integer part of x.
Thus given some Hamiltonian h0, which constitutes the Hermitian part of a non-Hermitian

Hamiltonian H = h0 + ih1, together with an operator q satisfying c(�+1)
q (h0) = 0 for some

finite integer �, the above procedure provides a systematic way to compute pairs of
Hamiltonians

h = h0 +
[�/2]∑
n=1

(−1)nEn

4n(2n)!
c(2n)
q (h0) and H = h0 −

[(�+1)/2]∑
n=1

κ2n−1

(2n − 1)!
c(2n−1)
q (h0),

(3.15)

with h = h† and H �= H †, which belong to the same similarity class related by the adjoint
action of η = exp(q/2) according to (2.3). The closed formulae in (3.15), together with the
line of arguments leading to them, appear to be new.

3.2. Perturbative similarity relations

Often one has a different type of starting point as in the previous subsection and would like to
construct h for a completely specified non-Hermitian Hamiltonian H, that is for given h0 and
h1. In that case we have to solve the commutator relation (3.7) for q and some �. Whenever
this is not possible in an obvious manner, one can resort to perturbation theory as originally
proposed by Bender, Brody and Jones [38] (see also [51]). To develop this one makes a further
assumption on the form of the similarity transformation η = exp(q/2), namely

q =
∞∑

n=1

g2n−1q2n−1. (3.16)

One may argue, by demanding PT -invariance [38], that the powers of g have to be
odd. Here we want to guarantee pseudo-Hermiticity and therefore present a slightly different
argumentation. We assume the following dependences on the coupling constant g

η(−g) = η(g)−1, h(g) = h(−g) and H †(g) = H(−g). (3.17)

The first equation is obviously satisfied by the ansatz (3.16), whereas the second and third are
supported by the examples presented below. Using then (3.17) the pseudo-Hermiticity

H †(g) = η(g)2H(g)η(g)−2 (3.18)

simply follows from

h(g) = η(g)H(g)η(g)−1 = h(−g) = η(−g)H(−g)η(−g)−1 = η(g)−1H †(g)η(g). (3.19)

Returning to the discussion of perturbation theory, we see that with the ansatz (3.16) the
multi-commutator c(n)

q (h0) will be at least of the order O(gn). This means that a precision
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of order O(g�) corresponds to c(�+1)
q (h0) = 0, such that the above arguments apply and from

(3.7) we obtain

h1 = i
�∑

n=1

κn

n!
gn

∑
n1+n2+···+n�=n

c(n1)
q1

(
c(n2)
q2

(· · · c(n�)
q�

(h0)
))

+ O(g�+1). (3.20)

Solving these equations order by order yields the set of equations

[h0, q1] = 2i

g
h1, (3.21)

[h0, q3] = i

6g
c(2)
q1

(h1), (3.22)

[h0, q5] = i

6g

[
c(1)
q1

(
c(1)
q3

(h1)
)

+ c(1)
q3

(
c(1)
q1

(h1)
) − 1

60
c(4)
q1

(h1)

]
, (3.23)

which can be used to determine the unknown quantities qi for 1 � i � � recursively, as already
noted in [38]. Having determined the qi to the desired order the Hermitian counterpart h to H
results from (3.11) to3

h =
[�/2]∑
n=0

(−1)nEn

4n(2n)!
g2n

∑
n1+n2+···+n�=2n

c(n1)
q1

(
c(n2)
q2

(· · · c(n�)
q�

(h0)
))

+ O(g�+1). (3.24)

We present here now various time-independent Hamiltonians which belong to the same
equivalence class and which we discuss below in its time-dependent variant.

3.3. Non-Hermitian Hamiltonians and their Hermitian counterparts

We will consider some non-Hermitian perturbations of the harmonic or anharmonic oscillators
depending on a real coupling constant α ∈ R

h0
n(α) = 1

2
p2 +

α

2
xn, (3.25)

where x and p are operators obeying the standard canonical commutation relation [x, p] = i.
Throughout this paper we use atomic units h̄ = e = me = cα = 1. In the last equation α is
of course the fine structure constant and not the coupling constant in (3.25).

3.3.1. Anharmonic oscillator perturbed by i
∑

gpxp. We take as a starting point the
harmonic oscillator h0 = h0

2(α) and q = µp, where µ is a real constant which needs to be
determined. It is then easily checked that the triple commutator c(3)

q (h0) indeed vanishes.
Therefore we evaluate from (3.5)

h1 = 1
2αµx = gx, (3.26)

where we introduced a new coupling constant g ∈ R to simplify the notation. The non-
Hermitian Hamiltonian is then of the form

H(α, g) = 1

2
p2 +

α

2
x2 + igx. (3.27)

3 After completion of this work we were notified by H F Jones that he also noted the occurrence of Euler’s numbers
in front of the multi-commutators of the perturbative expressions (3.21)–(3.23) [52]. Here they are a consequence of
our general formulae (3.15).
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According to (3.6) we compute next the Hermitian counterpart of H(α, g) to

h(α, g) = ηH(α, g)η−1 = 1

2
p2 +

α

2
x2 +

1

2

g2

α
. (3.28)

with

η = e
g

α
p. (3.29)

This equivalent system of Hamiltonians (3.27) and (3.28) follow also directly from (3.15) and
for α = g = 1, they can already be found for instance in [47].

We may now easily generalize this system by taking for the Hermitian part of the
Hamiltonian H the Hamiltonian h0 = h0

n(α) as starting point. We compute

c(m)
µp

(
h0

n(α)
) =

{
(−iµ)m α

2
n!

(n−m)!x
n−m for 1 � m � n

0 for m > n.
(3.30)

and thus we can take here � = n as a cut-off condition in order to compute h1 from (3.7). For
µ = 2g we then find

H AO
n (α, g) = 1

2
p2 +

α

2
xn − iα

2

[(n+1)/2]∑
m=1

(−1)2m

(
2g

α

)2m−1 (
n

2m − 1

)
κ2m−1x

n+1−2m, (3.31)

where the constants κm are determined from (3.14) as sums over Euler’s numbers. The
Hermitian counterpart results from (3.11) or (3.15) to

hAO
n (α, g) = ηH AO

n (α)η−1 = h0
n(α) +

α

2

[n/2]∑
m=1

(
2g

α

)2m

Em

( n

2m

)
xn−2m. (3.32)

Clearly, since c
(m)

pk

(
h0

n(α)
) = 0 for some finite values of k, n,m, we can generalize this

and take q = ∑k
m=1 µmpm to construct further conjugate pairs of Hamiltonians. Note that

the dependence of hAO
n (α, g),H AO

n (α, g) and η(g) on the coupling constant g respects the
aforementioned identities (3.17).

3.3.2. Generalizations of the Swanson Hamiltonian. Next we start again with h0 = h0
n(α),

but change the operator q in the similarity transformation to qm = µmxm. It is easy to observe
that in this case c

(3)
µmxm(h0

n(α)) = 0 for all m, n � 0. Therefore when taking µm = 2g/m

relation (3.5) yields

HS
n,m(α, g) = 1

2
p2 +

α

2
xn − i

g

2
(pxm−1 + xm−1p), (3.33)

and consequently (3.6) gives

hS
n,m(α, g) = h0

n(α) − 1

8

[
qm,

[
qm, h0

n(α)
]] = ηHS

n,m(α)η−1 (3.34)

= 1

2
p2 +

α

2
xn +

1

2
g2x2m−2. (3.35)

Note that when specializing to n = m = 2, we obtain the harmonic oscillator

hS
2,2(α, g) = h0

2(α + g2) (3.36)

and HS
2,2 becomes the Swanson Hamiltonian [46, 53]

H(α, g) = h0
2(α) − i

g

2
(xp + px), (3.37)
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upon changing the conventions for the coupling constants. We further note that only for m
odd ih1

n,m(α) is PT -symmetric, which sustains our previous assertion that the requirement
of pseudo-Hermiticity covers a larger class of Hamiltonians, which have a positive spectrum.
Once more we note that the dependence of hS

n,m(α, g),HS
n,m(α, g) and η(g) on the coupling

constant g respects the identities (3.17). Note that if the wave function φ is vanishing at ±∞
this is no longer the case for � for odd m .

3.3.3. Harmonic oscillator perturbed by igxn. In the examples discussed so far we were
always able to construct explicitly the similarity transformation η. However, when we start
with a given non-Hermitian Hamiltonian this is not always possible. For instance, considering
the simplest non-Hermitian perturbation of the harmonic oscillator by h1 = gx3 [38, 46, 51]
and their generalizations

H HO
n (α, g) = 1

2
p2 +

α

2
x2 + igxn (3.38)

one has to resort at present to perturbation theory in order to construct η. We adopt now the
notation Sm,n from [38, 46, 54] for the totally symmetric polynomial in the m operators p and
n operators x

Sm,n = 1

2n

n∑
k=0

(n

k

)
xkpmxn−k =

(m + n

n

)−1 ∑
π

pmxn. (3.39)

In the last expression we take the sum over the entire permutation group π . Since the variables
x and p are non-commutative this sum produces (m + n)!/m!/n! non-equivalent terms. The
first sum is the much simpler Weyl ordered version of this polynomial. Taking now in (3.21)
the harmonic oscillator h0

2(α) and h
(n)
1 = gxn as our starting point we solve (3.21) for q

(n)
1 and

compute to first order in perturbation theory

q
(3)
1 = 2

α

(
S1,2 +

2

3α
S3,0

)
, (3.40)

q
(5)
1 = 2

α

(
S1,4 +

4

3α
S3,2 +

8

15α2
S5,0

)
, (3.41)

q
(7)
1 = 2

α

(
S1,6 +

6

3α
S3,4 +

24

15α2
S5,2 +

16

35α3
S7,0

)
, (3.42)

q
(9)
1 = 2

α

(
S1,8 +

8

3α
S3,6 +

48

15α2
S5,4 +

64

35α3
S7,2 +

128

315α4
S9,0

)
, (3.43)

...

q
(n)
1 = −√

π

[(n+1)/2]∑
k=1

1

(−α)k

�
(
k − 1

2 − n
2

)
�

(
k + 1

2

)
�

(
1
2 − n

2

)S2k−1,n+1−2k. (3.44)

We extrapolated here to the closed formula for all values of n, which we have verified up to
n = 20. The expression for q

(3)
1 agrees with the solution found in [38]. The remaining q

(n)
1

for n � 3 do not seem to be known in the literature. It is straightforward, but labourous to
continue the analysis to higher orders. To next order we compute

q
(3)
3 = 4

(
32

15α5
S5,0 +

10

3α4
S3,2 +

2

α3
S1,4 − 3

α4
S1,0

)
. (3.45)



9278 C Figueira de Morisson Faria and A Fring

The expression for q
(3)
3 agrees precisely with the one found in [38, 46]. Once again the

expressions for higher values of n for q
(n)
3 seem to be unknown. From (3.15) we then compute

the Hermitian counterpart to (3.38) as

hHO
n (α, g) = 1

2
p2 +

α

2
x2 − i

g2

4

[
xn, q

(n)
1

]
+ O(g4). (3.46)

The only commutator one needs to evaluate this is [54]

[xn, Sr,s] = i
λ(n,r)∑
k=0

1

(−4)k

1

(2k + 1)!

n!

(n − 2k + 1)!

r!

(r − 2k + 1)!
Sr−2k−1,s+n−2k−1, (3.47)

where the upper limit of the sum is λ(n, r) = min([(n + 1)/2], [(r + 1)/2]). We then obtain

hHO
n (α, g) = 1

2
p2 +

α

2
x2 +

g2

2

[(n+1)/2]∑
k=1

k∑
p=0

ckp
n S2(k−p−1),2(n−p−k) (3.48)

with constants

ckp
n = (−1)k+p+1

√
π

2

1

αk4p

�(2k)�(n + 1)�
(
k − 1

2 − n
2

)
�

(
k + 1

2

)
�

(
1
2 − n

2

)
� (2k − 2p − 1) �(n − 2p)�(2p + 2)

(3.49)

In particular, this reduces to

hHO
3 (α, g) = 1

2
p2 +

α

2
x2 +

3

2

g2

α2

(
2S2,2 + αS0,4 − 1

3

)
(3.50)

hHO
5 (α, g) = 1

2
p2 +

α

2
x2 +

5

2

g2

α3

(
4

5
+ α2S0,8 − 4αS0,4 + 4αS2,6 − 16S2,2 +

8

3
S4,4

)
(3.51)

The expression for hHO
3 (α, g) recovers the one found already in [38, 46]. This equivalence

system has been studied extensively and here we shall elaborate further on it taking it as our
prime example in the next section. Specifying now α = 1 the eigenvalue problem for the
non-Hermitian counterpart of hHO

3 (1, g), namely H HO
3 (1, g) was solved in [55] up to order g4.

The energy eigenvalues were found to be

εn = n +
1

2
+

g2

8
(30n2 + 30n + 11) + O(g4). (3.52)

The quite lengthy expression for corresponding wavefunctions �n(x) may be found in [55],
see formulae (3.2), (3.3) and (3.6) therein. In the next section we would like to use the
wavefunction for the Hermitian Hamiltonian hHO

3 (1, g) instead, which we can simply compute
from (2.5). With the help of the explicit expression for q

(3)
1 we may express η as a differential

operator in x-space

η = 1 + ig

(
2

3
∂3
x − x∂xx

)
− g2

(
x2 + 2x3∂x − 3∂2

x +
x4

2
∂2
x − 8

3
x∂3

x − 2

3
x2∂4

x +
2

9
∂6
x

)
.

(3.53)

A somewhat lengthy but straightforward computation then yields

φn(x) = η�n(x) = in e−x2/2√√
π2nn!

[Hn(x) − g2Pn(x) + O(g4)], (3.54)
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where the Hn(x) are the nth Hermite polynomials,

Pn(x) = 3
16

(
2Ĥ n−4(x) − (8n − 4)Ĥ n−2(x) + (2n + 3)Hn+2(x) − 1

8Hn+4(x)
)

(3.55)

and Ĥ n−p(x) = n(n − 1)(n − 2) · · · (n − p + 1)Hn−p(x). The φn(x) are orthonormal
wavefunctions, which solve the Schrödinger equation up to order g4. We observe that despite
the fact that the Hermitian Hamiltonian hHO

3 is more complicated than its non-Hermitian
counterpart H HO

3 , this is no longer true for their corresponding wavefunctions as φn(x) takes
on a much simpler form than �n(x).

4. Time evolution for non-Hermitian Hamiltonians

Next we consider genuinely time-dependent Hamiltonians. There have been some previous
investigations in this direction [8–14], which, however, do not make use of pseudo-Hermiticity.
In addition, in many of these studies the precise meaning of the physical set-up remains
unclear. For instance, in [10], no explanation is given about the meaning of making the mass
time dependent etc. Here we wish to address a more clear cut physical problem, namely one of
the classical questions concerning the behaviour of a quantum mechanical system coupled to
an external electromagnetic field. In particular, we have in mind an atom in a time-dependent
linearly polarized electric field E(t) in the dipole approximation of finite duration τ . In the
length gauge, see section 4.2 for more discussions, this scenario is described by the Stark
Hamiltonian and the time-dependent Schrödinger equation reads

i∂tφ(t) =
[
p2

2
+ V + xE(t)

]
φ(t) = [h + xE(t)] φ(t) = hl(t)φ(t). (4.1)

We follow here largely the notation of [5, 56, 57]. As the field is taken to be a pulse of
finite duration we have hφ(0) = Eφ(0) and hφ(τ) = Eφ(τ). With regard to our previous
discussion we assume now that h has a non-Hermitian counterpart H which is in the same
equivalence class, such that H = η−1hη. Hence this involves a potential for which we no
longer demand that it is Hermitian, i.e. we allow V † �= V . Consequently also the resulting
Stark Hamiltonian is non-Hermitian Hl(t) �= H

†
l (t).

The central quantity of interest in this context is the time-evolution operator

u(t, t ′) = T exp

(
−i

∫ t

t ′
d sh(s)

)
, (4.2)

which evolves a wavefunction from a time t ′ to t, that is φ(t) = u(t, t ′)φ(t ′). T denotes the
time ordering. When h(s) is a self-adjoint operator in some Hilbert space, u(t, t ′) satisfies the
relations

i∂tu(t, t ′) = h(t)u(t, t ′), u(t, t ′)u(t ′, t ′′) = u(t, t ′′) and u(t, t) = I. (4.3)

Taking instead a Hamiltonian H(t) which is not self-adjoint and therefore its matrix
representation is non-Hermitian these relations no longer hold. However, as we now
demonstrate when H(t) is pseudo-Hermitian there is a simple modification of them. Acting
adjointly with the time-independent operator η−1 on (4.3) and assuming that the similarity
transformation h = ηHη−1 extends from the time independent to the time-dependent system

h(t) = ηH(t)η−1, (4.4)

simply yields

i∂tU(t, t ′) = H(t)U(t, t ′), U(t, t ′)U(t ′, t ′′) = U(t, t ′′) and U(t, t) = I,

(4.5)



9280 C Figueira de Morisson Faria and A Fring

where we introduced the new time-evolution operator U(t, t ′) associated with the non-
Hermitian Hamiltonian H(t) as

U(t, t ′) = η−1u(t, t ′)η. (4.6)

This time-evolution operator is quasi-pseudo-Hermitian

U †(t, t ′) = η2U−1(t, t ′)η−2, (4.7)

which follows directly from u†(t, t ′) = u−1(t, t ′). The non-Hermitian counterpart H to the
Hermitian Hamiltonian hl(t) as defined in (4.1) results therefore to

Hl(t) = H + η−1xE(t)η. (4.8)

The central assumption is here the validity of the similarity transformation (4.4), which makes
the formalism for the treatment of the non-Hermitian problem fairly straightforward. Of
course we could also try to solve the problem for the situation when the electric field is
coupled directly to the non-Hermitian Hamiltonian H, that means we take it to be of the form

Ĥ l(t) = H + xE(t). (4.9)

In some special cases, namely when η−1xE(t)η = xE(t), this version is equivalent to (4.8),
but in general we require a new kind of formalism for this type of situation as we have now
lost the equivalence relation (4.4).

4.1. Equivalent time-dependent pairs of Hamiltonians

Let us illustrate the above for the concrete examples discussed in section 3.
The simplest example is the generalized time-dependent Swanson Hamiltonian, which in

the length gauge is simply of the form

HS,l
n,m(α, g, t) = HS

n,m(α, g) + xE(t). (4.10)

In this case the formulations (4.8) and (4.9) coincide as η−1xE(t)η = xE(t). Its time-
dependent Hermitian counterpart is therefore simply given by

hS,l
n,m(α, g, t) = hS

n,m(α, g) + xE(t). (4.11)

Thus for the Swanson Hamiltonian one obtains the same result whether one couples the
electric field to h or H.

For the perturbed anharmonic oscillators, this relation does no longer hold, since the
similarity transformation (3.29) does not commute with x, but instead induces a complex shift
in x → x + ig/2. From (4.8) the time-dependent versions of the anharmonic oscillators
result to

H AO,l
n (α, g, t) = H AO

n (α, g) + xE(t) + igE(t)/2, (4.12)

which due to the last term is evidently different from the version (4.9). The time-dependent
version of its Hermitian counterpart (3.32) is

hAO
n (α, g, t) = hAO

n (α, g) + xE(t), (4.13)

and one has now entirely different systems when coupling the electric field to h or H.
The expressions become more complicated when we have non-trivial commutators

between x and η, as for the perturbed harmonic oscillator H HO
n (α, g), for which we only

know the similarity transformation perturbatively. In that case the time-dependent version
becomes

H HO
n (α, g, t) = H HO

n (α, g) + E(t)

∞∑
n=0

(−1)n

n!2n
c(n)
q (x) (4.14)
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and we have to terminate the infinite sum according to the desired order of precision in powers
of g. Using the commutator [x, Sm,n] = imSm−1,n, which results as a special case of the
commutator (3.47), the first order in g is easily computed with the generic expression for q(1)

n ,
see (3.44), to

H HO
n (α, g, t) = H HO

n (α, g) + E(t)

[
x − ig

[(n+1)/2]∑
k=1

√
π

(−α)k

�
(
k − 1

2 − n
2

)
�

(
k − 1

2

)
�

(
1
2 − n

2

)S2k−2,n+1−2k

]
.

(4.15)

In particular we have

H HO
3 (α, g, t) = H HO

3 (α, g) + xE(t) + i
g

α
E(t)

(
x2 +

2

α
p2

)
, (4.16)

H HO
5 (α, g, t) = H HO

5 (α, g) + xE(t) + i
g

α
E(t)

(
x4 +

4

α
S2,2 +

8

3α2
p4

)
. (4.17)

The next order is more challenging as it involves commutators between different types of
symmetric polynomials Sm,n and Sr,s for which an expression can be found, however, in [54]

[Sm,n, Sr,s] = in!r!
λ(n−2,r−2)∑

k=0

3F2(−1 − 2k,−m,−s; n − 2k, r − 2k; 1)

�(n − 2k)�(r − 2k)�(2k + 2)

× Sm+r−2k−1,n+s−2k−1, (4.18)

where 3F2 is a hypergeometric function. We will not present such calculations here.
At this point one may wonder about the PT -symmetry of the non-Hermitian Hamiltonians

involved. For instance the term igE(t)/2 is only PT -symmetric if E(−t) = −E(t), which
means that it depends on the explicit form of the laser pulse. Taking for instance a typical pulse
for a laser field with frequency ω, amplitude E0 and Gaussian enveloping function f (t), that is
of the form E(t) = E0 sin(ωt)f (t), would result in a PT -invariant Hamiltonian. However, the
perfectly legitimate replacement sin(ωt) by cos(ωt) would break the PT -invariance. Recall
that in this context the electric field is treated classically. A discussion of PT -invariance for a
full quantum electrodynamic setting may be found in [58, 59]. For the physical application in
mind, PT -invariance is, however, not a relevant issue here, since the pulse is always chosen
such that h�(0) = E�(0) and h�(τ) = E�(τ) and the eigenvalue problem is therefore only
important in the time-independent case. We treat the full solution of (4.1), the consequences
on the non-Hermitian counterpart and dressed states [60] elsewhere [61].

4.2. Gauge transformations for non-Hermitian Hamiltonian systems

For various applications it is extremely useful to transform the system to a different gauge.
For instance, when having weak fields the length gauge is suitable as it usually involves
the electric field just as an additional term, which is very useful for perturbation theory. The
Kramers–Henneberger gauge is most useful when one wishes to exploit the periodicity of the
field in Floquet analysis, especially for high frequencies. We now want to demonstrate how
gauge transformations may be used for non-Hermitian Hamiltonian systems. Replacing for
this purpose the wavefunction φ in the time-dependent Schrödinger equation related to some
Hermitian Hamiltonian h by φ = a(t)−1φ′, with a(t) being some unitary operator, one obtains
the well-known identity, see e.g. [5, 56, 57]

i∂tφ
′ = h′(t)φ′ = [a(t)h(t)a(t)−1 + i∂ta(t)a(t)−1]φ′. (4.19)
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Due to the relation φ = η� it is straightforward to see that the gauge transformation for the
non-Hermitian system results to

i∂t�
′ = H ′(t)�′ = [A(t)H(t)A(t)−1 + i∂tA(t)A(t)−1]�′, (4.20)

where the similarity transformation (4.4) extends to the gauge fields as well as to the gauge
transformed time-dependent Hamiltonians

a(t) = ηA(t)η−1 and h(t) = ηH(t)η−1. (4.21)

Note that the gauge transformations A(t) guarantee that physical observables remain invariant,
when computed using the generalized inner product (2.6).

In the context of laser-matter interaction, there are standard gauge transformations, from
the length to the velocity gauge and from the velocity to the Kramers–Henneberger gauge

al→v(t) = eib(t)x and av→ KH(t) = ei d(t) e−ic(t)p, (4.22)

respectively, involving the classical momentum transfer b(t), the classical displacement c(t)

and the classical energy transfer d(t), from the laser field to the system in question. Such
quantities are defined as

b(t) =
∫ t

0
ds E(s), c(t) =

∫ t

0
ds b(s) and d(t) = 1

2

∫ t

0
ds b(s)2. (4.23)

In the Hermitian case, the Hamiltonians in the length, velocity and Kramers–Henneberger
gauge are related as

hl(p, x) − xE(t) = hv(p + b(t), x) = hKH(p, x + c(t)). (4.24)

Physically, in the length gauge, the coupling with the field can be understood as a laser-induced
dipole moment. In the velocity gauge, such a coupling appears as a shift p → p − b(t) in the
canonical momentum, corresponding to the well-known minimal coupling procedure. Finally,
in the Kramers–Henneberger gauge, there is a displacement x → x − c(t) in the coordinate x,
which can be interpreted as time-dependent binding potential [62]. For their pseudo-Hermitian
counterparts H, one has in general

Hl(p, x) − η−1xE(t)η �= Hv(p + b(t), x) �= HKH(p, x + c(t)). (4.25)

Note that when in η = eq/2 the operator q is linear in x or p, the equalities hold in (4.25).
Otherwise, the similarity transformation will not induce a simple shift and will mix terms in x
and p (for concrete examples, see section 4.2.1).

We will compute the Hamiltonians discussed in section 3 in the velocity and the
Kramers–Henneberger gauges, starting from their length-gauge counterparts (section 4.1).
Thereby, there exist two ways to proceed: either one applies the gauge transformations a(t)

to the Hermitian Hamiltonians h(t), and obtains its non-Hermitian counterpart employing the
similarity transformation η, or one applies the transformations A(t) to the pseudo-Hermitian
Hamiltonians H(t) directly.

4.2.1. The generalized Swanson Hamiltonian. For the generalized versions of the Swanson
Hamiltonian, the similarity transformation η only depends on x, and therefore commutes
with the transformation al→v(t) from the length to the velocity gauge. This implies that
al→v(t) = Al→v(t), so that the Swanson Hamiltonian HS,v

n,m(α, g, t) together with its Hermitian
counterpart in the velocity gauge are easy to compute

HS,v
n,m(α, g, t) = 1

2
(p − b(t))2 +

α

2
xn − i

g

2
(pxm−1 + xm−1p − 2b(t)xm−1), (4.26)
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and

hS,v
n,m(α, g, t) = 1

2
(p − b(t))2 +

α

2
xn +

1

2
g2x2m−2, (4.27)

respectively.
The computation of the time-dependent Swanson Hamiltonian in the Kramers–

Henneberger gauge is slightly more involved, since the gauge transformation av→ KH(t) no
longer commutes with the similarity transformation η. Hence,

Av→ KH(t) = exp
[
− g

m
xm

]
eid(t) e−ic(t)p exp

[ g

m
xm

]
(4.28)

In this case, the time-dependent Swanson Hamiltonian and its Hermitian counterpart are
computed to

HS,KH
n,m (α, g, t) = p2

2
+

α

2
(xc(t))

n +
g2

2
(xc(t))

2m−2 − i
g

2
(pxm−1 + xm−1p) − g2

2
x2m−2,

(4.29)

and

hS,KH
n,m (α, g, t) = p2

2
+

α

2
(xc(t))

n +
1

2
g2(xc(t))

2m−2, (4.30)

respectively, with xc(t) = x − c(t). Note that in this case the equalities in (4.25) do not hold
as there are terms in (4.29) occurring for which the displacement c(t) is absent. Such type of
terms result from a shift p → p − igxm−1 in the momentum, caused by η. This can be seen
explicitly when (4.29) is rewritten as

HS,KH
n,m (α, g, t) = (p − igxm−1)2

2
+

α

2
(xc(t))

n +
g2

2
(xc(t))

2m−2. (4.31)

4.2.2. Perturbed anharmonic oscillators. For perturbed anharmonic oscillators, the
similarity transformation η depends on p. Hence, it no longer commutes with al→v(t), so
that

Al→v(t) = e− g

α
p eib(t)x e

g

α
p. (4.32)

On the other hand, such a transformation commutes with av→ KH(t), from the velocity to
the Kramers–Henneberger gauge. Therefore, Av→ KH(t) = av→ KH(t). For the non-Hermitian
Hamiltonians, we then obtain

H AO,v
n (α, g, t) = (p − b(t))2

2
+

α

2
xn +

iα

2

[ (n+1)

2 ]∑
m=1

(−2g

α

)2m−1 (
n

2m − 1

)
κ2m−1x

n+1−2m

H AO,KH
n (α, g, t) = p2

2
+

α

2
xc(t)

n +
iα

2

[ (n+1)

2 ]∑
m=1

(−2g

α

)2m−1 (
n

2m − 1

)
κ2m−1(xc(t))

n+1−2m.

In this case, the equality sign in (4.25) hold in analogy to their Hermitian counterparts (4.24),
which is expected, since q is a linear function of p.

Once more we see from this that the non-Hermitian formulation exhibits no advantage
over the Hermitian one. Even when in the time-independent case the Hamiltonian H is simpler
than its Hermitian counterpart h, this is spoiled by the introduction of the electric field. Thus
in such a scenario, we have in h a complicated potential term, but simple dependence on
the electric field, whereas in H we have a simple potential but a complicated dependence
on the electric field. Alternatively, one could add the field directly to H and thus keep
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both terms simple, but then the similarity transformation, which is already fixed by the
time-independent part, will introduce non-Hermitian terms in h. Apart from this we have seen
above that simplicity in the Hamiltonians does not imply simplicity in their eigenfunctions (see
section 3.3.3).

4.3. Perturbation theory for non-Hermitian Hamiltonian systems

In most realistic situations, the time evolution of a physical system cannot be computed exactly.
For instance, even in a Hermitian framework, it is in general not possible to solve the time-
dependent Schrödinger equation for an atomic system with a binding potential V (x) subject to
an external laser field E(t). Under these circumstances it is necessary to address the problem
perturbatively. In this section, we will show how perturbation theory can be extended to a
non-Hermitian framework. As a starting point, let us consider a time-dependent Hermitian
Hamiltonian

h(t) = h0(t) + hp(t), (4.33)

where h0(t), hp(t) are also Hermitian and satisfy the time-dependent Schrödinger equation.
Provided that the time-evolution operators associated with h(t) and h0(t) both satisfy the
relation (4.3), the time-evolution operator u(t, t ′) associated with h can then be expressed by
means of Du Hamel’s formula [5, 56, 57, 63]

uh(t, t
′) = u0(t, t

′) − i
∫ t

t ′
uh(t, s)hp(s)u0(s, t

′) ds. (4.34)

By iterating Du Hamel’s formula, one obtains a perturbative expansion for the time-evolution
operator uh(t, t

′) in hp 
 h0. For instance, for a Hamiltonian of an atom in a potential V in
the presence of an external laser field

h(t) = p2

2
+ V (x) + xE(t), (4.35)

one chooses hp(t) = xE(t) and hp = V (x) in the strong and weak field regime, respectively.
In the latter case h0(t) is the Gordon–Volkov Hamiltonian, i.e., the Hamiltonian of a particle
in the presence of the laser field only [64, 65].

As we have argued above, relations of the type (4.3) also hold for the time-evolution
operator U(t, t ′) in (4.6). Provided we can sensibly separate H(t) = H0(t) + Hp(t) such
that U0(t, t

′) satisfies the relation (4.5) as well, Du Hamel’s formula also holds for the non-
Hermitian time-evolution operator

UH(t, t ′) = U0(t, t
′) − i

∫ t

t ′
UH(t, s)Hp(s)U0(s, t

′) ds. (4.36)

The time-evolution operators may then be employed to compute various quantities of physical
interest, such as for instance the transition probability

Pn←m = |〈�n|U(t, 0)|�m〉η|2 = |〈φn|u(t, 0)|φm〉|2 (4.37)

from an eigenstate |φm〉 to |φn〉 of the Hermitian field-free Hamiltonian h or from an eigenstate
|�m〉 to |�n〉 of the non-Hermitian field-free Hamiltonian H. We will consider first-order
perturbation theory with respect to the external laser field amplitude E0. Iterating (4.34) it
follows that to this order the time-evolution operator can be approximated by

u(1)(t, 0) = u0(t, 0) − i
∫ t

0
u0(t, s)xE(s)u0(s, 0) ds, (4.38)
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where u0(t, 0) = exp[−iht]. The transition amplitude then reads

〈φn|u(t, 0)|φm〉 = δnm e−iεnt − i e−iεnt 〈φn|x|φm〉
∫ t

0
ei(εn−εm)sE(s) ds, (4.39)

where the εn are the eigenenergies. From parity considerations it is evident that 〈φn|x|φm〉 �= 0
only when m, n are not both even or odd.

Let us now employ these formulae for a concrete examples.

4.4. Harmonic oscillator with a cubic non-Hermitian perturbation

We consider the harmonic oscillator perturbed with a cubic non-Hermitian perturbation in the
presence of a laser field

H
HO,l
3 (1, g, t) =: H(t) = 1

2p2 + 1
2x2 + igx3 + η−1xηE(t). (4.40)

Up to order g3 this becomes with (3.40)

H(t) = p2

2
+

x2

2
+ xE(t) + ig[x3 + x2E(t) + 2p2E(t)] + g2E(t)[x3 − 2pxp] + O(g3).

(4.41)

As pointed out earlier, we observe that the additional term in (4.40), which contains the electric
field has destroyed the simplicity of the time-independent Hamiltonian. There is an additional
problem with regard to perturbation theory, because we have lost the clear distinction of the
potential term from the electric field term such that the separation into an H0(t) and Hp(t)

becomes more problematic, as now the two parameters g and E0, which control the perturbative
expansion, occur mixed, i.e. one has terms ∝ gE0,∝ g2E0, etc.

The Hermitian setting is much more clear cut and in addition the computations are far
simpler as in the free field case the wavefunctions take on a simpler form as discussed in
section 3.3.3. Thus when we consider the Hermitian counterpart of (4.41) instead

h(t) = h + xE(t) = 1
2p2 + 1

2x2 + g2[ 3
2x4 + 3S2,2 − 1

2

]
+ xE(t) (4.42)

one is able to overcome this problem. We may now evaluate the transition probability (4.37)
for the eigenstates |φm〉, |φn〉 of the field-free Hamiltonian hHO

3 (1, g) see (3.50), up to second
order in g, such that u0(t, 0) = exp

[−ihHO
3 t

]
. Choosing next a concrete form for the laser field

E(t) = E0 sin(ωt), that is a monochromatic driving field of frequency ω and field amplitude
E0, we may compute (4.39) for the Hamiltonian (4.42). Our results are presented in figure 1.

Panel (a) displays the transition probabilities |φ15〉 → |φ16〉 or (|�15〉 → |�16〉) up to first-
order perturbation theory in E0, when the system is subjected to a pulse of constant duration τ ,
but with varying field frequency. For comparison, we also consider the unperturbed harmonic
oscillator h0 in the presence of an external laser field, i.e. h(t) in (4.42) for g = 0. Our choice
of relatively highly excited states is motivated by the fact that according to (3.52) the difference
between the perturbed and unperturbed system should be more pronounced for larger values
of n.

We expect to find that the system absorbs a single photon of frequency ω = εn+1 − εn,
in order to make a transition from the initial state |φn〉 to the final state |φn+1〉. Thus for the
unperturbed harmonic oscillator we expect a peak at ω(h0) = εn+1 − εn = 1 and for the
perturbed system we find from (3.52) that the peak should be at

ω
(
hHO

3 , n, g
) = εn+1 − εn = 1 + g2 15

2 (n + 1)/2. (4.43)

We evaluate from this ω
(
hHO

3 , 15, 0.04
) = 1.192, which agrees with our numerical calculation

of the expression (4.39), resulting to 1.190.



9286 C Figueira de Morisson Faria and A Fring

(a)

(b) (c)

Figure 1. (Colour online) Transition probability for a perturbed and unperturbed harmonic
oscillator in the presence of a monochromatic laser field, as functions of the field frequency
(panel (a)), and of the time (panels (b) and (c)). The perturbed and the unperturbed labels refer
to expansions up to second and zeroth order in the parameter g, respectively. We consider the
transition from the energy level n = 15 to m = 16 to first-order perturbation theory with respect to
the external laser field. The field amplitude is taken to be E0 = 0.003 au and the coupling constant
is chosen as g = 0.04. The pulse length τ and the frequency ω are indicated in the figure.

(This figure is in colour only in the electronic version)

Next we fix the frequency of the laser field to be resonant with the transition frequency,
but vary the duration of the pulse. From standard computations (see e.g. [66]) it follows that
the resonance probability should increase with t2 when the system is tuned to the transition
frequency. This behaviour is confirmed by our perturbative calculations. In panel (b) of
figure 1 one clearly observes that that for the perturbed harmonic oscillator, the transition
probability increases approximately quadratically in time, whereas the unperturbed system
does not exhibit this behaviour as it is off-resonance. In panel (c) the roles of the two systems
are exchanged and we are now at the resonance frequency of the unperturbed system whereas
the perturbed system is off-resonance.

5. Conclusions

We have constructed various new equivalence pairs, which relate non-Hermitian Hamiltonians
to their Hermitian counterparts. Our construction scheme is general and can be employed to
compute further pairs not considered this far.

We have demonstrated that when demanding the same similarity transformation to hold
for the time-dependent Hamiltonian system and their time-independent counterpart, it is
straightforward to develop a framework which describes the time evolution for non-Hermitian
Hamiltonian systems. Despite the possibility of computing all relevant quantities in the
non-Hermitian framework it turned out that it is usually easier to resort to the equivalent
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Hermitian formulation of the same systems and perform the evaluations in that context. In the
future, it would be very interesting to investigate systems which constitute equivalence pairs
in the time-independent case, but have the equivalence relation broken in the time-dependent
scenario [61], such as (4.9). One may also contemplate the possibility of making η explicitly
time dependent, which, however, will require a rather different formalism.

As was already remarked by various authors before, one may question the usefulness of
PT -symmetry altogether. First, despite the fact that it is a symmetry, it does not guarantee
that the spectrum of the non-Hermitian Hamiltonian will be real, due to the anti-linear nature
of the PT -operator. Second, in the end it will come down to studying pseudo-Hermitian
Hamiltonians, which not only constitute a wider class of systems, but in addition do not suffer
from the shortcoming that the spectrum might not be positive and real after all. Third, we have
used the fact that the time-independent non-Hermitian Hamiltonian is pseudo-Hermitian in
formulating the time-evolution operator U. Just having PT -symmetry as the only principle at
one’s disposal would make this task very difficult. Of course using the relation η2 = PC one
may re-express all quantities in terms of CPT-operators, but that would really mean to use the
similarity transformations as a construction principle. Fourth, apart from the time-independent
Hamiltonian all quantities seem to be simpler in the Hermitian formulation, e.g. see above for
the wavefunctions, the time-dependent Hamiltonians in their various gauges and perturbation
theory.

Despite its limited constructive power PT-symmetry remains useful in the sense that it is
a very simple and transparent property, which can be read off directly from the Hamiltonian
and thus constitutes a tool which can be used to identify potentially interesting non-Hermitian
Hamiltonians.
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